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Abstract

Analytical studies for magnetoelastic behavior of functionally graded material (FGM) cylindrical and spherical vessels
placed in a uniform magnetic field, subjected to internal pressure are presented. Exact solutions for displacement, stress
and perturbation of magnetic field vector in FGM cylindrical and spherical vessels are determined by using the infinites-
imal theory of magnetoelasticity. The material stiffness and magnetic permeability obeying a simple power law are assumed
to vary through the wall thickness and Poisson’s ratio is assumed constant. Stresses and perturbation of magnetic field
vector distributions depending on an inhomogeneous constant are compared with those of the homogeneous case and pre-
sented in the form of graphs. The inhomogeneous constant, which includes continuously varying volume fraction of the
constituents, is empirically determined. The values used in this study are arbitrary chosen to demonstrate the effect of
inhomogeneity on stresses and perturbation of magnetic field vector distributions.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical properties of cylindrical and spherical structures made of functionally graded material
(FGM) vary continuously in the macroscopic sense from on surface to the other. This is achieved by gradually
varying the volume fraction of the constituent materials in the manufacturing process. FGMs are composite
materials intentionally designed so that they possess desirable properties for some specific applications.

Recently there has been growing interest in materials deliberately fabricated so that their mechanical prop-
erties vary continuously in space on the macroscopic scale. Previous studies on the subject considered FGM
including those, for example, by Tanigawa (1995), Horgan and Chan (1998, 1999), Yang (2000), Rooney and
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Nomenclature

U,u displacement vector and radial displacement [m]
Ey,v  elastic constant and Poisson ratio
0,,00 components of stresses [N/m?]

p,t mass density [kg/m?] and time variable [s]
r radial variable [m]

H magnetic intensity vector

h perturbation of magnetic field vector

J electric current density vector

e perturbation of magnetic field vector

Ho magnetic permeability [H/m]
ffs  Lorentz’s force [kg/m” s]
a,R inner and outer radii of the FGM hollow cylinder and the FGM hollow sphere [m]

Ferrari (2001), where additional references can be found. A few studies had addressed this. Liu et al. (1991,
1992) used strip element method to deal with an FGM plate. The elastic problem of thick-walled tubes of a
functionally graded material under internal pressure in the case of plane strain had been studied by Fukui and
Yamanaka (1992). Durodola and Adlington (1996) presented the use of numerical methods to assess the effect
of various forms of gradation of material properties to control deformation and stresses in rotating axisym-
metric components such as disks and rotors. Nadeau and Ferrari (1999) presented a one-dimensional thermal
stress analysis of a transversely isotropic layer that is inhomogeneous in its thickness. The works concerned
with the stress analysis of cylindrical structural elements involve finite elements and other numerical
techniques due to the nature of functions chosen to describe the inhomogeneous properties (Loy et al.,
1999; Salzar, 1995). Using the infinitesimal theory of elasticity, Tutuncu and Ozturk (2001) obtained the
closed-form solutions for stresses and displacements in functionally graded cylindrical and spherical vessels
subjected to internal pressure. However, investigations on the exact solutions for FGM pressure vessels in
a uniform magnetic field have not been found in the literature.

The present paper is, upon employing simplifying assumptions, to present to the technical community in the
field simple, tractable closed-form solutions in FGM cylindrical and spherical vessels. The aim of this research
is to understand the effect of the volumetric ratio of constituents and porosity on magnetoelastic stresses and
perturbation of magnetic field vector and to design the optimum FGM cylindrical and spherical vessels.

It is assumed that the material is isotropic with constant Poisson’s ratio and radially varying elastic mod-
ulus and magnetic permeability are, respectively, approximated by E(r) = Egr* and u(r) = uor”, the similar
assumption can be found in previous studies (Ye et al., 2001; Tarn, 2001; Wu et al., 2003). Since r is away
from zero and ranges in (¢, R) by adjusting the constants Ey, ty and f3, it is possible to obtain physically mean-
ingful results. The range —2 < f# < 2 to be used in the present study covers all the values of coordinate expo-
nent encountered in the references cited earlier. However, these values for f do not necessarily represent a
certain material. Various f§ values are used to demonstrate the effect of inhomogeneity on the stress and per-
turbation of magnetic field vector distributions.

2. Basic formulations and solutions

The stress and perturbation of magnetic field vector distributions in FGM cylindrical and spherical pressure
vessels will be calculated. The radial coordinate 7 and the displacement # are normalized as » = 7/R and
u = u/R where R is the outer radii of the FGM cylindrical and spherical vessels. The stiffness and magnetic
permeability are assumed to vary as E(r) = Eqr’ and u(r) = por® through the wall thickness, respectively. Here,
E, is the stiffness at the outer surface (r = 1), yo is the magnetic permeability at the outer surface (r = 1) and f§
is the inhomogeneous constant determined empirically.
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2.1. Cylindrical vessel

A long, FGM hollow cylinder with perfect conductivity placed in a uniform magnetic field H (0,0,H,) is
shown in Fig. 1, letting the cylindrical coordinates of any representative point be (r, 0, z). For the axisymmetry
plain strain assumption problem, the constitutive relations are

Ou u Ou u

0r2011§+612;7 60201254-611; (la,b)
where
Eo(l — U) B E()U B
R P — _ - v 2
au {(1+V)(1 —ZV)}F’ LT -2 @)
The boundary conditions are expressed as
O'V(Cl/R):—p, O-r(l):() (3)

Assuming that the magnetic permeability, po, at the outer surface (r = 1) of the FGM cylindrical vessel
equals the magnetic permeability of the medium around it and omitting displacement electric currents, the
governing electrodynamic Maxwell equations (Kraus, 1984; Dai and Wang, 2004) for a perfectly conducting,
elastic body are given by

~ - _ aﬁ - — U -
J=Vxh, Vxez—,u(r)a, div h =0, e:—,u(r)(atxH>,

h =V x (UxH) 4)

Applying an initial magnetic field vector H (0,0, H.) in cylindrical coordinate (r,0,z) system to Eq. (4), yields

- - 0

U= w00, e=-u(0.1.50). (59)
- - Oh, ou u

h=(0,0,h), J= (o,—5,0>, h = —HZ(EJF;) (5b)

The electromagnetic dynamic equation of the FGM hollow cylinder, in absence of body forces, is expressed as

do, . 0, — 0y
or r

+f=0 (6)

Fig. 1. The geometry of a FGM hollow cylinder in a uniform magnetic field H..
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where f; is defined as Lorentz’s force (Kraus, 1984; Dai and Wang, 2004), which may be written as

- = 0 Ou u
_ _ 2= (B2 B
o= u(r)(J x H) = poH? < <r Rt r) ()
Substituting Egs. (1), (2) and (7) into Eq. (6), yields
u Ou
2— —_— — =
r aerr(l +ﬂ)rar+(iﬁ Du=0 (8)
where

V4 w2 (1 +v)(1 = 2v)

= 1 ) (9)
— v+ uH (1 +v)(1 —2v)
Eq. (8) is the familiar Euler—Cauchy equation with the characteristic equation (10)
m* + pm+(p—1)=0 (10)
the characteristic equation’s roots are
1
m =5 (=F— 4+~ 4p)) (11a)
1
m =5 (=B + 4+ —4pA) (11b)

For any stable materials, we always have ¢;, < ¢;; which indicates that the discriminant of Eq. (10) is always
greater than zero. That is to say, m; and m, are real and distinct. The solution to Eq. (8) is

u=Ar" + Br™ (12)

By virtue of Eq. (12), the expressions of the radial, circumferential stresses and perturbation of magnetic
field vector of the FGM cylindrical vessel are derived as follows:

__ B _ my+f-1 _ my+f-1
O = v (1 = 2w) L = O VAR (L = o)my - 9]Br T (13a)
— L _ my+p—1 _ my+p—1
%0 = Tyt =2y (1 om0 (1= v v ) B ] (13b)
h. = —H_[(my + DA™ ™" 4 (my + 1)Br™ 1) (13c)

The constants 4 and B are determined from the boundary conditions (3)
 p®Ta a2y
Eo[(®)" = ()" ]v+ (1= v)m]
()" (1)1 —2v)
Eo[(®)™ = @]+ (1= v)my]

So Egs. (13) can be written as

A=

(14a)

B= (14b)

a\ 1 =P m — ) ph-1
o= PE )r (15a)

®"-®"

P(%)l_ﬁ(’h — 1)

gy = m m 15b
[(;‘;) : —(1%) 2][m1(v—1)—v][m2(v—l)—v] (15b)

o p® U =29 f i D (g 1!
e (g U e e e 13
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where
=" my(v—1) = v][1 + (m — 1)v] (16a)
1, =r"2mi(v—1) —v][1 + (my — 1)V] (16b)

2.2. Spherical vessel

A FGM hollow sphere with perfect conductivity placed in a uniform magnetic field H (0,0,H) is shown in
Fig. 2, letting the spherical coordinates of any representative point be (r, 0, ¢), the constitutive relations are
(Sinha, 1962; Dai and Wang, 2005)

Ou u Ou u
O'r:Cna-i-zClz;, 00201254'(011 +012); (17a,b)
Omitting displacement electric currents, the governing electrodynamic Maxwell equations (Kraus, 1984) for a
perfectly conducting, elastic body are given by

- - ~ oh - — ) -
J = Curl 4, Curl e = —pu div h =0, e:—u<—U><H>,

o’ ot
h = Curl(U x H) (18)
Applying an initial magnetic field vector H (0,0, H ) in spherical coordinate (r, 0, ¢) system to Eq. (18), yields
U= w0.0. ¢ =-u(0.6,50) (19)
- - 6h¢ ou 2u
h_(0707h¢)7 J = (07_Ea0>a h¢__H¢<§+T> (19b)

The electromagnetic dynamic equation of the FGM hollow sphere, in absence of body forces, is expressed as

oo, 2(6, —
%, , 20— )

o +fe=0 (20)
where f is defined as Lorentz’s force (Kraus, 1984), which may be written as
- = 0 Ou 2u
_ _ 2 O [ pOU | el
Jo=u(r)(J xH) = poH, 3 (r 6r+r r) (21)

Fig. 2. The geometry of FGM hollow sphere in a uniform magnetic filed H.
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Substituting Egs. (2), (17) and (21) into Eq. (20), yields

o’u ou
2 _ _— — =
e + 2+ p)r e +2(Ap—lu=0 (22)
where
B v+u0H<2b(l+v)(lf2v) (23)
L= v pHG (14 v)(1 = 2v)
Eq. (22) is the familiar Euler—-Cauchy equation with the characteristic equation (24)
S+ (B+Ds+2(4-1)=0 (24)
the characteristic equation’s roots are
1
slzz(—l—ﬁ—\/9+2ﬁ+/32—8ﬁ41) (25a)
1 2
s2:§(—1—ﬁ+\/9+2ﬁ+ﬁ — 884) (25b)
Here also, only real, distinct roots will be considered. The solution is
u=Cr'" +Dr? (26)

By virtue of Eq. (26), the expressions of the radial, circumferential stresses and perturbation of magnetic field
vector of the FGM spherical vessel are derived as follows:

Ey s1+f—1 -1
o = vy L= 05+ 200 [(1 = o)y 20D ) (272)
““WES%iEﬂvwmw““+u+mww%ﬂ (27b)
h. = —H_.[(sy + D)Cr " + (s, + 1)Dr2 1] (27¢)

The constants C and D are determined from the boundary conditions Eq. (3)
1,
p(e)"" (L)1 - 2v)
Eo[(3)" = (3)7][2v+ (1 = v)s1]

 p®T"a a2y
E " — @72y + (- vsi] (280)

So Egs. (27) can be rewritten as

C=- (28a)

D=

p() 0 —

0 = == ) 29
" =% (29a)
oo = ()61~ b
" T =G = 1) = 2l — 1) — 2 (299)

_ p(@l_ﬁ(l +v)(1 —2v) s1+1 a1 s34+ 1 -1
e T @7 {[2v Ta-ws] T ra-vel } (29¢)
where

5y = P sa(v = 1) = 2y + (1 + (51 — 1]} (30a)

0y = Vsi(v = 1) = 20[{v + rP[1 + (s, — 1)v]} (30b)
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Stresses and perturbation of magnetic field vector for the FGM pressure vessels will be compared with
those for the homogeneous ones. The well-known stresses and perturbation of magnetic field vector expres-
sions for the homogeneous vessels under internal pressure can easily be obtained by setting =0 in the
FGM case. It should also be noted that no Poisson’s ratio is presented in the homogeneous case whereas it
is clearly noticed in the FGM case along with the inhomogeneous constant.

3. Numerical results and discussion

Example 1. The results are presented for a/R = 0.5 and v = 0.3. Figs. 3-5 show the radial stress, circumfer-
ential stress and perturbation of magnetic field vector distributions in the FGM cylindrical vessel, respectively.
From the curve of Figs. 3 and 4, one knows, a positive § means increasing stiffness in the radial direction for
0.5 <r <1 (atr=1, the limit of normalized stress is calculated). Under internal pressure alone, more stiffness
is needed near the inner surface to better withstand the applied pressure. Thus, decreasing the stiffness in the
radial direction increases stresses with respect to the homogeneous case. The converse is obviously true; having
higher stiffness near the inner surface carries the applied pressure leading to decreasing stresses through the
wall thickness. Fig. 5 depicts the distribution of perturbation of magnetic field vector, from the curves in
Fig. 5, it is seen that the variation of perturbation of magnetic field vector is different that in Figs. 3 and 4,
the magnitude of value of perturbation of magnetic field vector is become gradually small from inner wall
to outer wall of the FGM cylindrical vessel. The same FGM spherical vessel (i.e., /R =0.5 and v =0.3) is
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Fig. 4. Circumferential stress distribution in FGM hollow cylinder, where a/R =0.5.
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observed in Figs. 6 and 7. Comparing Figs. 6 and 3, it is seen easily that radial stress distributions is nearly the
same. It is seen ecasily from Figs. 4 and 7 that the circumferential stress distributions have the same trend, but
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Fig. 6. Radial stress distribution in FGM hollow sphere, where a/R = 0.5.
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Fig. 7. Circumferential stress distribution in FGM hollow sphere, where a/R = 0.5.
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the magnitude of value of circumferential stress in the FGM spherical vessel is larger than that of FGM cylin-
drical vessel.

Example 2. The results are presented for a/R = 0.9 and v = 0.3. The same non-dimensional quantities are
taken as Example 1. Figs. 8—10 show the radial stress, circumferential stress and perturbation of magnetic field
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Fig. 8. Radial stress distribution in FGM hollow cylinder, where a/R = 0.9.
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Fig. 9. Circumferential stress distribution in FGM hollow cylinder, where a/R = 0.9.
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Fig. 10. The perturbation of magnetic field vector distribution in FGM hollow cylinder, where a/R = 0.9.
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vector distributions in the FGM cylindrical vessel, respectively. Comparing Figs. 8 and 3, one found, the
curves are the same trend as the structure is difference. It is seen easily from Figs. 9 and 4 that the trend of
curve becomes the slower as the structures takes thinner. The same trend in perturbation of magnetic field vec-
tor of FGM cylindrical vessels is observed by comparing Figs. 5 with 10.

4. Conclusion

1. By means of the infinitesimal theory of magnetoelasticity, exact solutions for FGM cylindrical and spher-
ical vessels in a uniform magnetic field, subjected to internal pressure are obtained. The inhomogeneous
constant presented in the present study is useful parameter from a design point of view in that it can be
tailored for specific applications to control the stress and perturbation of magnetic field vector
distributions.

2. Numerical results show that the gradient index f§ has a great effect on the magnetoelastic stress and pertur-
bation of magnetic field vector. For example, a negative f§ will yield compressive radial stress at the inner
surface and tensile radial stress at the outer surface, while a positive f§ gives a contrary result. Thus by
selecting a proper value of f, it is possible for engineers to design FGM cylindrical and spherical vessels
that can meet some special requirements.

3. Although this paper considers the case in which the material constants are of power functions in the radial
variable, the technique is applicable to other material inhomogeneity.
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